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ABSTRACT: Passive membrane permeation of small mole-
cules is essential to achieve the required absorption,
distribution, metabolism, and excretion (ADME) profiles of
drug candidates, in particular intestinal absorption and
transport across the blood−brain barrier. Computational
investigations of this process typically involve either building
QSAR models or performing free energy calculations of the
permeation event. Although insightful, these methods rarely
bridge the gap between computation and experiment in a quantitative manner, and identifying structural insights to apply toward
the design of compounds with improved permeability can be difficult. In this work, we combine molecular dynamics simulations
capturing the kinetic steps of permeation at the atomistic level with a dynamic mechanistic model describing permeation at the in
vitro level, finding a high level of agreement with experimental permeation measurements. Calculation of the kinetic rate
constants determining each step in the permeation event allows derivation of structure−kinetic relationships of permeation. We
use these relationships to probe the structural determinants of membrane permeation, finding that the desolvation/loss of
hydrogen bonding required to leave the membrane partitioned position controls the membrane flip-flop rate, whereas membrane
partitioning determines the rate of leaving the membrane.

■ INTRODUCTION

Transport of small molecules across biomembranes is a
fundamentally important mechanism to achieve suitable
bioavailabilty or intracellular exposure. It is also essential to
crossing the blood−brain barrier for molecules unable to
appropriate an active transport mechanism. While active
transport processes exist for endogenous hydrophilic substances
such as sugars and amino acids, the predominant mechanism by
which xenobiotics cross membranes is through permeation
across the lipid bilayer along a concentration gradient.1 A
thorough understanding of passive membrane permeation is
therefore required to efficiently optimize ADME-Tox proper-
ties during drug discovery and development.2,3 Furthermore,
the development of ligands targeting membrane proteins may
benefit from such knowledge, given that certain drugs may
enter the binding site via the membrane or may modulate
membrane proteins allosterically by binding to an external
membrane-exposed site.4,5

Historically, Overton’s rule has been used to predict passive
membrane transport, whereby molecules with a higher oil/
water partition coefficient (log P) are predicted to have faster
membrane permeation.6 This observation allowed the develop-
ment of the solubility-diffusion model for membrane
permeation, whereby the membrane is treated as a homoge-
neous solvent and movement is determined by Fick’s law of
diffusion.7 However, studies of lipid bilayers, a simple
representation of the full cell membrane, have revealed a
more complex heterogeneous picture than an oily slab, given

that lipids contain polar head groups and nonpolar chains.8 To
account for this, the inhomogeneous solubility-diffusion model
was developed,9,10 taking into account depth-dependent
partitioning, resistance, and diffusion parameters. These models
assume that diffusion through a single membrane barrier is the
rate-limiting step; therefore, resulting permeation profiles are
monoexponential.11 However, for lipophilic compounds, the
membrane may act as both a barrier and a sink,12 meaning that
desorption from the membrane into the acceptor compartment
may be the rate-limiting step in overall permeation. Permeation
of lipophilic drug-like molecules may therefore require a
different theoretical treatment.
A limited number of studies investigating membrane

permeation have used a kinetic model to better capture the
processes involved in crossing a lipid bilayer.11,13−19 The overall
rate of permeation depends on the kinetic rate constants (and
respective reverse rate constants) of three consecutive steps
involved in such dynamic models of permeation:

1. Membrane entry (partitioning).
2. Flip-flop across the hydrophobic membrane core.
3. Membrane exit.

Such a model is depicted in Figure 1. If the small molecule is
charged, then it first becomes protonated/deprotonated
depending on the pKa value of the molecule. It then partitions
into the membrane with rate constant kin (and may leave the

Received: October 27, 2016
Published: December 13, 2016

Article

pubs.acs.org/JACS

© 2016 American Chemical Society 442 DOI: 10.1021/jacs.6b11215
J. Am. Chem. Soc. 2017, 139, 442−452

pubs.acs.org/JACS
http://dx.doi.org/10.1021/jacs.6b11215


membrane at rate constant kout), with the ratio of the kin and
kout rate constants determining the water/membrane partition-
ing of the compound. Small amphiphilic drug molecules
typically position in the membrane just below the lipid
headgroup region.20 Note that since this position is proton
accessible the protonation/deprotonation step may also occur
here. The next step is the flip-flop of the molecule across the
hydrophobic membrane core, with rate constant kflip. Finally, to
undergo a full permeation event, the molecule must exit the
headgroup region on the opposite side of the membrane into
solvent with rate constant kout. Movement across a membrane is
therefore split into a number of steps, meaning that such a
model may better describe the bi- or triexponential permeation
profiles as observed experimentally.11

As overall permeation depends on the respective kinetic rate
constants of each sequential step, any single rate constant, or
combination of rate constants, may be rate-limiting to
permeation. For highly polar molecules, the kin and kflip rate
constants determine overall permeation, which is likely to be
slow. As lipophilicity increases, kin becomes high, and at certain
lipophilicity, kflip and kout may become roughly equivalent and
optimal permeation is achieved. At even higher lipophilicity,
kout becomes low and limits overall permeation. Consequently,
a parabolic relationship between log P and permeation may be
observed.21 To fully investigate permeation with such a model,
we require the value of each kinetic rate constant.
Recently, Eyer et al. determined the rate of permeation for a

series of seven basic drug compounds using a liposomal
fluorescence assay.22 Given the high accuracy of such a method
and the use of a single layer POPC liposome, we can be
confident that the measured permeation rate is due solely to
passive permeation through the POPC membrane, which may
not be the case for Caco-2 or MDCK cell permeation assays.

Figure 1. Kinetic model of small molecule membrane permeation
involving four compartments. The small molecule substrate
approaches the membrane from the aqueous outer phase (AO)
which has volume VAO, becoming protonated/deprotonated depend-
ing on charge state. The small molecule then moves across the
membrane head groups with rate constant kin (membrane has surface
area ALO) to partition into the outer membrane layer, LO, which has
volume VLO. Flip-flop across the membrane hydrophobic core then
proceeds with rate constant kflip, allowing the molecule to move into
membrane inner layer, LI, which has volume VLI. Finally, the small
molecule leaves the inner membrane layer to the aqueous inner phase,
AI, with rate constant kout, where the AI phase has volume VAI. A full
membrane permeation event involves each sequential step.

Figure 2. Molecular structures, experimental pKa and log P values, and liposomal permeation rates for the neutral form of seven weakly basic small
molecules.22,49
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Although the membrane composition is closer to the in vivo
picture, Caco-2 and MDCK permeation assays involve cell
monolayers, and true passive permeation may be obscured by
the presence of efflux pumps, the possibility of para-cellular
transport, and the unstirred water layer limiting diffusion to the
membrane.
Using a liposomal system, Eyer et al. report that neither

diffusion in the aqueous layer nor membrane partitioning is
rate-limiting to membrane permeation, by determining
permeation at different aqueous volume to liposome surface
area ratios. We can therefore assume that, for these compounds
at least, kin is almost instantaneous on the experimental time
scale. Note that this experimental method captures only the
permeation of the neutral form of ionic species, consistent with
the pH-piston hypothesis23 and the model depicted in Figure 1.
Detailed computational investigations of permeation in

recent years have primarily used molecular dynamics (MD)
and the potential of mean force (PMF) method, from which a
permeability coefficient may be derived using the inhomoge-
neous solubility-diffusion model (ISDM).9,10,24−34 The ISDM
appears to capture the permeation of water and other small
solutes;10,27,28,35 however, extension to larger drug-like
molecules has given varied results.32 To investigate the
movement of larger solutes across the membrane, techniques
such as metadynamics and milestoning add further dimensions
to the calculation of membrane permeation from free energy
simulations.12,36−42 Certain studies have investigated the kinetic
rates of membrane interaction, such as adsorption to a bilayer
surface43 or flip-flop across the membrane hydrophobic
core.44−47

In this work, we apply the ISDM to the data set reported by
Eyer et al., finding reasonable agreement with experiment. We
next combine information from the PMF simulations with short
unbiased “downhill” MD simulations to estimate the kinetic
rate constants of membrane entry (kin), membrane exit (kout),
and flip-flop (kflip) using a Markov state model.48 By
incorporating these rate constant values into a dynamic
mechanistic model of liposome permeation, we achieve a
higher level of agreement with experiment for permeability
coefficients, validating the MD-derived rate constants and
indicating that the dynamic model better represents the
experimental system than the ISDM. We then use the kinetic
rate constants to examine each step in the permeation process
and build structure−kinetic relationships of membrane
permeation. We find that in order to optimize the two slowest
steps in the overall process, kflip and kout, we must balance the
enthalpy cost to flip-flop with compound membrane partition-
ing, which typically tracks with log P.

■ METHODS
Experimental Measurement of Permeation. The data

set of seven weakly basic compounds is given in Figure 2, along
with pKa, log P, and liposomal permeation values. Permeation
was measured by Eyer et al. using a liposomal fluorescence
assay.22 This assay tracks compound appearance within
liposomes using a pH-sensitive fluorophore; proton release by
the basic small molecule occurs prior to membrane permeation,
and proton uptake within the liposome occurs after permeation.
The fluorescence increase over time is fitted to a biexponential
function, allowing calculation of apparent permeability
coefficients, Permapp, which may be converted into permeation
coefficients of the neutral form only (PermN) using the
Henderson−Hasselbalch equation. The extrapolation from the

observed Permapp to PermN assumes that only the neutral form
of the basic compounds permeate. On the basis of the log P and
permeability data in Figure 2, it can be seen that for this data
set log P is a poor predictor of permeation (r2 = 0.27).

Potential of Mean Force Simulations. The free energy of
transfer from the water phase to the center of a POPC
membrane was calculated for the seven drug molecules in
Figure 2 in neutral form using the umbrella restraint potential
of mean force method. Compounds were modeled with the
parm@Frosst force field,50 a small molecule force field that
extends AMBER ff99SB,51 and conformationally averaged
AM1-BCC charges;52−55 lipids were modeled using the
AMBER Lipid14 force field56−58 and water using the TIP3P
model.59 Molecular dynamics simulations were run with
AMBER 1660 and PMEMD CUDA61−63 on GPU cards.
To obtain starting structures, each drug molecule was placed

at the center of an equilibrated 72 POPC membrane with 60
waters per lipid. The system was then energy minimized for
10 000 steps, of which the first 5000 steps used the steepest
descent method and the remaining steps used the conjugate
gradient method.64 Initial heating from 0 to 100 K was then
applied using Langevin dynamics65 within a 5 ps constant
volume run, with restraints on the drug molecule and lipids
(force constant 10 kcal/mol/Å2). The volume was then allowed
to change freely, the temperature was increased to 303 K with a
Langevin collision frequency of γ = 1 ps−1, and anisotropic
Berendsen control of the pressure66 around 1 atm was applied
by coupling the periodic box with a time constant of 2 ps for
100 ps. The same restraint of 10 kcal/mol/Å2 was maintained
on the drug compound and lipid molecules.
The pressure relaxation time was then reduced to 1 ps,

restraints were removed on lipids, and the system was left to
equilibrate for 5 ns in NPT. Three dimensional periodic
boundary conditions with the usual minimum image con-
vention were employed. Bonds involving hydrogen were
constrained using the SHAKE algorithm,67 allowing a 2 fs
time step. PME was used to treat all electrostatic interactions68

beyond a cutoff of 10 Å. A long-range analytical dispersion
correction was applied to energy and pressure. A harmonic
restraint of 2.5 kcal/mol/Å2 was applied on the drug molecule
only, allowing it to move in the x- and y-dimensions but
restraining it in the z-dimension.
Drug molecules were then pulled from z = 0 Å out to 40 Å

(in the bulk water phase) using a pulling rate of 1 Å/ns and
force constant of 1.1 kcal/mol/Å2. The pulling simulation
therefore lasted 40 ns and was performed in the NPT ensemble
with semi-isotropic pressure scaling. Pulling from the
membrane center outward has been shown to increase
convergence of final free energy profiles.69 Snapshots were
then saved with the drug molecule positioned at z = 0 Å, 1 Å, 2
Å, ..., 40 Å from the membrane center. Each of the 40 windows
was then run for 20 ns to allow equilibration, followed by an 80
ns production run, with the ligand restrained in the z-
dimension only using a harmonic force constant of 2.5 kcal/
mol/Å2. Trajectory frames were recorded every 10 ps, and drug
molecule z-position, every simulation step. The free energy of
transfer profile (water → membrane) was then constructed
using the weighted histogram analysis (WHAM) program70

with tolerance of 1 × 10−8 under the assumption that results
from the single leaflet were applicable to the opposing leaflet by
symmetry. Convergence of each PMF was achieved by an 80 ns
run time (see Supporting Information section 1). In order to
obtain error estimates, the pulling step was repeated for each
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molecule from a different orientation within the membrane
core, allowing different snapshots at each position into the
membrane to be selected, and the full PMF calculation was
repeated (20 ns equilibration and 80 ns production). Final
results are therefore the average of independent runs ±
standard deviation. One of the seven compounds, verapamil,
showed high variance in free energy at the membrane center; a
third independent repeat was therefore performed for this
molecule. From the PMF results, the position-dependent
diffusion, resistance, and overall permeation coefficient was
then determined using the inhomogeneous solubility-diffusion
model.9,10,71

The position-dependent diffusion values were calculated as

∫
= ∞D z

z

C t t
( )

var( )

( ) dzz

2

0 (1)

where Czz(t) = ⟨δz(0) δz(t)⟩ is the autocorrelation function of
the z-position of the drug molecule during the PMF window.71

This was determined for 1 ns blocks of the production runs (80
blocks total) by integrating the Czz(t) curve until it had decayed
to 0.01 × var(z) such that noise around Czz(t) = 0 was
discarded from the integration. The D(z) values are therefore
averages over 80 estimates.
The position-dependent resistance values are then

β
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where β = 1/kBT, kB is Boltzmann’s constant, and T is
temperature. See Supporting Information section 2 for full
ISDM results. Integration of the R(z) profile allows calculation
of an overall permeation coefficient Peff
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where the integration extremes are in the water phase at either
side of the membrane (zb = 40 Å and −zb = −40 Å). The
membrane partitioning values of each drug molecule for the
POPC membrane were determined from the PMF free energy
curves using the standard binding free energy72
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The membrane partitioning is then

β= − Δ °K Gexp( )lip bind (5)

Final Peff and Klip values are the average of the independent runs
± standard deviation. The average number of hydrogen bonds
each drug molecule makes to either lipid head groups or water
molecules while partitioned was determined by counting
hydrogen bonds using CPPTRAJ73 using the trajectory of the
PMF window corresponding to the energy minimum of the
respective PMF profile for each compound. The hydrogen
bond definition was a distance of 3.5 Å and an angle greater
than 135°.
Kinetic Rate Constant Estimation with Markov State

Models. The biased PMF results were combined with multiple
short, unbiased MD simulations initiated at either the
membrane center (z = 0 Å) or the water phase (z = 40 Å),
in pyEMMA software.74 The selection of these starting points
along the z-axis reaction coordinate ensures the resulting

simulations are “downhill”; i.e., the drug molecule moves
toward the equilibrium position just below the polar lipid head
groups. For each of the seven drug molecules, 100 unbiased
runs were performed starting from different initial conforma-
tions with the small molecule at z = 0 Å for 25 ns NPT, during
which time the drug translocated to the equilibrium position
just below the lipid head groups. A further 100 unbiased runs
were performed per drug molecule initiated with different
starting conformations in the water phase (z = 40 Å), with each
simulation lasting 100 ns NPT; in almost all simulations, the
drug partitioned into the membrane, positioning just below the
lipid head groups.
We first derived the implied time scales in order to determine

a suitable lag time by estimating Markov state models using the
unbiased simulation data only at a series of lag times (1, 2, 3, 5,
7, and 10 timesteps of 10 ps); it was found that for all
compounds a lag time of 1 time step was suitable as the ITSs
are approximately flat with this lag time (see Supporting
Information section 6). We then built a Markov state model
using the unbiased simulation data and the stationary
distribution from the previous PMF calculation with a lag
time of 1 time step, allowing calculation of the kinetic quantities
of the system.48 It was found that there are three slow
relaxation time scales; we therefore used the PCCA+ spectral
clustering method to cluster the data into four metastable sets.
In all cases, these four sets corresponded to the water phase on
either side of the membrane and the equilibrium positions
within the membrane just below the lipid head groups (see
Supporting Information section 6).
The mean-first-passage times (MFPT) between these

metastable sets therefore provides estimates of the rate
constants kin, kout, and kflip. Errors in kinetic rate constant
values were determined as averages over the independent PMF
runs ± standard deviation; the MSM procedure was performed
using each of the independent PMF results with the unbiased
simulation data for that compound, allowing kinetic rate
constant estimates to be made for each independent free energy
surface.

Comparison to Spontaneous Flip-Flop Runs. To
investigate how well the PMF calculations capture the
spontaneous flip-flop of small molecules across the membrane
core, numerous unbiased simulations of propranolol, one of the
molecules with higher experimental permeability, were run. A
72 POPC membrane with 30 waters per lipid and a single
propranolol molecule partitioned just below the headgroup
region was equilibrated for 50 ns at 303 K in the NPT
ensemble. Then 250 independent simulations with different
random velocities were performed, each for 100 ns each,
amounting to a total of 25 μs of sampling. From these runs,
three complete flip-flop events were observed; additionally, four
half-events also occurred, whereby propranolol moved to the
membrane center and then returned to the origin leaflet. These
unbiased events allow investigation of the orientation and
hydrogen bonding behavior during flip-flop and how well the
biased PMF windows capture the true flip-flop event. It was
found that for propranolol the molecular orientation and
hydrogen bonding compare favorably between the unbiased
flip-flop simulations and biased PMF windows (see Supporting
Information section 5). Furthermore, WHAM may be applied
to the unbiased simulation data to determine the free energy
barrier to membrane flip-flop; this is found to be within the
error bars of the umbrella sampling result (see Supporting
Information section 5). These observations provide confidence
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in the biased PMF results, at least for propranolol. However,
the sampling required to perform the same comparison for the
less permeable compounds limits extension to the full data set.
Dynamic Mechanistic Model of Passive Membrane

Permeation. A kinetic model of liposome permeation was
constructed in MATLAB,75 following those outlined pre-
viously,11,14−16 with parameters chosen such that it matches the
experimental liposomal permeation assay setup.
It consists of movement between four compartments (see

Figure 1) that is controlled by four coupled ordinary differential
equations

= − ′ + ′

= ′ − ′ + +

= ″ − ″ + +

= − ″ + ″
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where S denotes the amount of substrate (drug molecule) in
moles, AO is the outer aqueous phase, LO is the outer lipid
layer, LI is the inner lipid layer, and AI is the inner aqueous
phase. Note that the adsorption and desorption rate constants
are dependent on surface area of the barrier and volume of the

origin phase via = ( )k P A
V

, where P is the permeation

coefficient, A denotes surface area, and V denotes volume.
The observed rate constant estimates from MD simulations
were converted to their respective P values using the surface
area of the bilayer (POPC area per lipid 65.6 Å2) and volumes
of the water phase (TIP3P water volume 30.5 Å3) and lipid
phase (POPC volume per lipid 1205.4 Å3).58,76 The P values

are therefore = ( )P k V
Ain

MD
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The rate constants for the mechanistic model were then
determined using the appropriate surface areas and volumes of

the liposome system as ′ = ( )k P A
Vin in

MD LO

AO
and so forth.

The drug molecule amount was 10 μmol (entirely in the
outer aqueous phase at time t = 0), and the liposome diameter
was 200 nm in order to replicate experimental conditions.22

The VAO:VLO:VLI:VAI ratio of 1000:1:1:10, as identified by
Thomae et al., was used to specify the volumes.77

The system was simulated until steady-state was achieved,
and the resulting increase of substrate amount in the acceptor
compartment (AI) was fitted to the biexponential function

= +− −S A Be ek t k t
AI

a b (7)

where SAI is the observed substrate amount in acceptor
compartment AI, A and B are weighting coefficients, ka and kb
are rate constants, and t is time. Permeation coefficients for
movement across the entire membrane are then calculated
using the rate constant ka of the fastest phase via22,78,79

=P
k r
3
a

(8)

where r is the radius of the liposome (100 nm). This procedure
to determine permeability coefficients from the compound

appearance in the acceptor compartment mirrors that used
experimentally by Eyer et al.22

■ RESULTS
Free Energy and Kinetic Calculations. The free energy

of transfer profiles (water→ membrane) for the neutral form of
each of the seven weak bases are plotted in Figure 3. All profiles

have a similar shape: upon membrane entry, the free energy
drops sharply to a minima just below the lipid head groups at
approximately z = 10 Å from the bilayer center. Only verapamil
shows a significant barrier to crossing the headgroup region of
the membrane, possibly since this compound does not possess
hydrogen bond donors and therefore cannot adequately replace
water molecules solvating lipid head groups while crossing the
membrane/water interface. Once inside the membrane at the
free energy minimum, the barrier to move back into water is
ΔGmem. To instead transition across the membrane to the
equivalent free energy minima at the opposite side, the
compounds must undergo a flip-flop event across the
hydrophobic membrane core, with barrier ΔGflip. The two
independent repeat PMFs for chlorpromazine, desipramine,
domperidone, and loperamide yielded low error, reaching a
maximum of ±0.35 kcal/mol or less at the membrane center.

Figure 3. Free energy of transfer profiles (water → membrane) for the
seven weakly basic small molecules under study. Results were
calculated for one bilayer leaflet and assumed to be identical for the
other leaflet by symmetry. The PMF is the average of two or more
independent runs; the standard deviations are shown with shading.
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However, the error for labetalol reaches ±0.66 kcal/mol at the
membrane center; for propranolol, it rises to ±0.87 kcal/mol.
Finally, verapamil required a third independent repeat PMF;
even so, this compound yielded the maximum error at the
membrane center of ±1.06 kcal/mol.
In order to obtain permeability coefficients from PMF

calculations, typically the position-dependent diffusion values
are determined for each window and combined via the ISDM
to arrive at an overall permeation coefficient using eq 3. Values
calculated with this method are given in Table 1 and plotted in
Figure 4. The ISDM performs reasonably well in terms of rank
ordering the compounds for permeation (r2 = 0.76); however,

when comparing quantitatively with experiment, all permeation
coefficients are overestimated (mean absolute difference = 1.55;
gradient of trend line m = 0.20). These results are in-line with a
previous study by Swift et al. which sought to validate the
ISDM for permeation prediction, achieving r2 = 0.45 between
predicted and experimental values for 11 compounds; free
energy profiles for propranolol and verapamil also compare
favorably to those determined by Swift et al.32 The numerical
result of 17.4 cm s−1 for propranolol is close to that of 10 and
14 cm s−1 determined for the structurally very similar alprenalol
using all-atom and mixed all-atom/coarse-grain simulations.80,81

We next turn to the results of the MD-derived kinetic rate
constants and overall permeation estimate using the dynamic
mechanistic model of permeation. On inspection of the values
of the kinetic rate constants in Table 1, all kin values are
relatively similar (∼1 × 109 s−1), likely reflecting near diffusion-
limited entry into the membrane, as observed experimentally by
Eyer et al.22 If kin rate constants are roughly equivalent, then
kout values should depend solely on membrane partitioning of
the compound, resulting in a range of kout rate constants
covering 2 orders of magnitude (1.43 × 102 to 4.86 × 104 s−1).
We find that flip-flop rate constants kflip cover 5 orders of
magnitude (3.50 × 102 to 1.74 × 107 s−1); furthermore, they
roughly rank compounds in order of experimental permeation.
The kinetic rate constants of membrane entry kin are
comparable with experimental observations of kin rate constant
between 3.5 × 109 to 8.5 × 1010 s−1 for aliphatic amine
compounds.82 Simulation results of kflip have been reported for
cholesterol (3 × 105 to 4.7 × 106 s−1)46 and oleic acid (0.22−
0.28 × 106 s−1)44 that are comparable to kflip values reported in
Table 1.
Inserting each rate constant value into the dynamic

mechanistic model of permeation then allows calculation of
the time course of compound appearance in the acceptor
compartment (i.e., the liposome inner aqueous layer in Figure
1), resulting in permeation profiles as shown in Figure 5. By
fitting the resulting permeation profile to a biexponential
function (eq 7), we can then estimate permeation coefficients
by applying eq 8 (see Table 1). It is seen that these results give
higher correlation with experiment than the ISDM, with r2 =
0.94. Furthermore, the gradient of the trend line rises to m =
0.94 and the mean absolute difference with experiment
decreases to 0.31.
Comparison of calculated membrane partitioning values with

available experimental PC liposome partitioning data points
reveals that the MD results for the most part overpredict
membrane partitioning (see Table 2). This may be either due

Table 1. Permeability Coefficients from Experiment and Those Calculated Using the Inhomogeneous Solubility-Diffusion
Model or the Dynamic Mechanistic Model with MD-Derived Kinetic Rate Constants

name
log (PermN/[cm s−1])

(experiment)
log (PermN/[cm s−1])

(ISDM) kin (s
−1) kout (s

−1) kflip (s
−1)

log (PermN/[cm s−1])
(multiscale)

domperidone −2.6 0.49 ± 0.09 1.48 ± 0.26 × 109 1.76 ± 0.16 × 103 3.50 ± 0.85 × 102 −2.65 ± 0.11
labetalol −2.1 0.90 ± 0.14 1.17 ± 0.06 × 109 1.14 ± 0.18 × 104 1.30 ± 0.88 × 104 −1.20 ± 0.36
loperamide −0.42 1.03 ± 0.03 8.59 ± 0.74 × 108 1.81 ± 0.77 × 103 6.71 ± 4.89 × 105 0.11 ± 0.09
verapamil 0.01 0.89 ± 0.04 4.56 ± 0.61 × 108 1.43 ± 1.23 × 102 7.53 ± 4.09 × 106 0.09 ± 0.05
propranolol 0.19 1.24 ± 0.04 1.27 ± 0.12 × 109 3.09 ± 1.84 × 104 4.75 ± 2.83 × 106 0.51 ± 0.06
chlorpromazine 0.59 1.35 ± 0.01 1.94 ± 0.01 × 109 7.75 ± 3.46 × 102 1.74 ± 0.04 × 107 0.85 ± 0.13
desipramine 0.65 1.26 ± 0.01 2.13 ± 0.93 × 109 4.86 ± 1.27 × 104 1.09 ± 0.02 × 107 0.70 ± 0.10

Correlation with Experimental Permeation
r2 0.76 0.94
mean absolute
difference

1.55 0.31

Figure 4. Correlation between experimental permeation coefficients
and those calculated using (A) the inhomogeneous solubility-diffusion
model and (B) multiscale model using MD-derived kinetic rate
constants.
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to the choice of force field, the charge derivation method, or
rather a limitation of fixed charge force fields; previous work
has found improved prediction of membrane partitioning by
including polarizability.72 A further discrepancy may be the
difference in lipid composition: experiments used liposomes of
egg PC or PhC, whereas simulations used pure POPC bilayers.
Structure−Kinetic Relationships of Membrane Per-

meation. On analysis of Table 1, it is seen that either the kflip
rate constant or the kout rate constant may be the slowest
process in overall membrane translocation. Of the seven
compounds, only domperidone has a kflip rate constant lower
than kout, meaning that for this compound the flip-flop process
is the slowest step. On comparison of the domperidone
chemical structure (Figure 2) with the second slowest
permeating compound, labetalol, it may be surprising that
domperidone has a lower flip-flop than labetalol: domperidone
has log P 3.9, a hydrogen bond donor (HBD) count of 2, and a
hydrogen bond acceptor (HBA) count of 7; conversely,
labetalol has a lower log P of 3.09, HBD 5, and HBA 5. We
would likely expect labetalol to have slower movement across
the hydrophobic membrane core due to its lower log P and
greater number of HBDs. However, the structure of labetalol is
essentially “lipid-like” given that is has a hydrophobic tail and
hydrophilic headgroup region, meaning that when partitioned
in the membrane it orientates along the membrane normal.
Domperidone has no such separation of hydrophobic and
hydrophilic regions, and when partitioned, it orientates along
the membrane/water interface (see Supporting Information
section 4), leaving it more solvent exposed. Labetalol has the
additional advantage of being able to form up to two

intramolecular hydrogen bonds, shielding HBDs when located
in the low dielectric medium of the membrane, an ability that
has been linked to enhanced membrane permeation.86,87 The
flip-flop process, rather than being determined by compound
hydrophobicity, is likely limited by desolvation cost to leave the
membrane partitioned position.35 Indeed, we find that this
combination of intramembrane orientation and internal
hydrogen bonding (see Figure 6) translates to lower solvation

of labetalol while partitioned in the membrane compared to
domperideone; by counting the average number of hydrogen
bonds formed between the molecules and either water or lipid
head groups when partitioned in the membrane, we find that
domperidone forms on average 4.4 H-bonds, whereas labetalol
makes 4.23. The slower flip-flop of domperidone due to its
higher membrane partitioned solvation, combined with lower
kout, translates into making it the slowest permeating compound
of the set.
Although the flip-flop rate constant may be rate-limiting for

certain molecules, in other instances the kout rate constant may
limit permeation. Comparison of propranolol and verapamil
reveals that although propranolol has a lower kflip than
verapamil, it has a much higher kout due to lower membrane
partitioning and faster overall permeation. In this case, the
molecular descriptors of verapamil and propranolol align with
their respective flip-flop rate constants: verapamil has log P
3.79, HBD 0, and HBA 6, whereas propranolol has log P 3.48,
HBD 2, and HBA 3. The more hydrophilic propranolol
therefore has the lower flip-flop rate constant. Furthermore,
their solvation while partitioned lines up with flip-flop cost as
verapamil has fewer H-bonds while partitioned (0.78) versus
propranolol (1.69).
Both desipramine and chlorpromazine have similar kflip values

(1.09 × 107 to 1.74 × 107 s−1) and structurally are also very
similar. As with the previous example, we find that in this case
kout is the rate-limiting step, with the kout value of
chlorpromazine being lower than that of desipramine. This
arises due to the differing membrane partitioning of the two
compounds: desipramine has a log P of 4.9, whereas
chlorpromazine has a log P of 5.41, which translates into
experimental log Klip,n values of 4.05 and 4.45, respectively. This
may be due to the presence of one HBD on desipramine,
whereas chlorpromazine has no HBDs.
A final point of interest is the most hydrophobic molecule in

the data set. Loperamide has the highest log P value of 5.5, yet

Figure 5. Change of drug amount in inner aqueous phase of liposome
with time from simulations of the dynamic mechanistic model of
permeation using MD-derived kinetic rate constants.

Table 2. Experimental Log P Values, Experimental PC
Membrane Partitioning of Neutral Species, and Calculated
PC Membrane Partitioning of Neutral Species from the PMF
Results

name log P log Klip,n c log Klip,n

domperidone 3.90 4.94 ± 0.004
labetalol 3.09 4.16 ± 0.04
loperamide 5.50 4.75 ± 0.22
verapamil 3.79 4.2083 6.07 ± 0.76
propranolol 3.48 3.3584 3.81 ± 0.31
chlorpromazine 5.41 4.4584 5.44 ± 0.22
desipramine 4.90 4.0585 3.47 ± 0.01

Figure 6. Intramembrane orientation of domperidone (left) and
labetalol (right) while at the energy minima position within the
membrane and below lipid head groups. Labetalol is able to form two
intramolecular hydrogen bonds (dashed yellow lines). Membrane
lipids are shown in a gray surface; water is shown as a red surface.
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it has intermediate membrane permeation (log PermN =
−0.42). Despite being the most lipophilic, loperamide has
one of the lowest kflip values, being higher than only
domperidone and labetalol. Once again, we find that the flip-
flop rate constant is better predicted from the desolvation cost
to leave the equilibrium partitioned position just below the lipid
head groups; loperamide forms an average number of 2.0
hydrogen bonds with either water or lipid while partitioned in
the membrane, correctly ranking the barrier to flip-flop as lower
than domperidone or labetalol yet higher than the remainder of
the set (see Supporting Information section 3 for full list of H-
bonds while partitioned values). An interesting comparison
point is with propranolol due to their similar molecular
properties: loperamide has HBD 1 and HBA 4, whereas
propranolol has HBD 2 and HBA 3. We could therefore expect
propranolol to form more hydrogen bonds with water or lipid
while partitioned due to higher HBD and therefore have a
lower rate of flip-flop than loperamide. However, as with
labetalol, the structure of propranolol is more “lipid-like”,
resulting in a membrane partitioned orientation along the
membrane normal, whereas loperamide orientates along the
membrane/water interface (see Supporting Information section
4). Furthermore, propranolol has the ability to shield one HBD
by forming an intramolecular hydrogen bond. These features
result in fewer H-bonds while partitioned and a lower
desolvation cost to flip-flop for propranolol, meaning a lower
barrier to move across the membrane core and higher kflip rate
constant.
From the structure−kinetics relationships investigated, we

find that either kflip or kout may be the slowest step to membrane
permeation, with the combination of the two rate constants
deciding overall translocation rate. The kout is determined by
membrane partitioning, which generally follows log P.88 The
kflip rate constant is best predicted from hydrogen bonding of
the compound to water or lipid while partitioned in the
membrane. The number of hydrogen bonds while partitioned
does not necessarily follow the sum of HBD and HBA as could
be expected (see Supporting Information section 3): intra-
membrane orientation and ability to shield HBDs also play an
important role.
Finally, we note that, for this data set, overall membrane

permeation trends with the rank order of kflip rate constants.
The rate constant of flip-flop kflip is determined by the free
energy barrier ΔGflip, which in turn depends primarily on loss of
hydrogen bonds to leave the membrane partitioned position
(see ΔGflip and H-bond count correlation in Supporting
Information section 3). We therefore find a strong correlation
between overall experimental permeation and the average
number of hydrogen bonds each compound makes with either
lipid or water while partitioned at equilibrium position in the
membrane (see Figure 7). Consequently, this value, which may
be calculated from a single MD run, may potentially serve as a
suitable virtual predictor for membrane permeation, in
particular when kout is not a deciding factor.

■ DISCUSSION
In this work, we study membrane permeation for a set of well-
characterized compounds using all-atom simulations and a
dynamic mechanistic model, finding good quantitative agree-
ment with experiment when combining kinetic rate constants
derived from MD into the dynamic model of in vitro liposome
permeation. This level of agreement with experiment cannot be
matched with the ISDM as applied to PMF calculations.

Furthermore, the calculation of kinetic rate constants allows us
to build structure−kinetic relationships of permeation and
investigate each step in the overall process. Such structure−
kinetic relationships may aid in optimization of chemical
structures for membrane permeation and related ADME-Tox
properties. As predicted from the kinetic model of permeation
(Figure 1), we find that overall permeation depends on two
counterbalanced processes: kout (maximized by decreasing
membrane partitioning) and kflip (maximized by lowering the
number of hydrogen bonds that must be lost to allow flip-flop).
Optimal permeation therefore depends on balancing membrane
partitioning with enthalpy cost to flip-flop; membrane
partitioning should not be lowered to the extent that kin
becomes rate-limiting. Obtaining rate constants allows us to
investigate the effect of differences in given energy barriers
encountered during membrane translocation on the overall rate
of membrane permeation.
In essence, both the ISDM and the dynamic mechanistic

model take as input the same information: the free energy
landscape calculated for the movement of each molecule across
the membrane. The ISDM then uses position-dependent
diffusion values from which the local resistances are
determined; finally, these are integrated to yield an overall
resistance to permeation, the inverse of the permeability
coefficient. The local resistances depend exponentially on the
free energy yet only linearly on the local diffusion; the position-
dependent resistances therefore closely follow the free energy
profile. On the other hand, the dynamic mechanistic model
takes only three rate constants, which are proportional to the
ΔGflip and ΔGmem barriers encountered on the free energy
landscape. It therefore appears that the better agreement with
experiment of the dynamic model is not due to the atomistic
computation but how this data is treated by the theoretical
model of permeation. Whereas the ISDM assumes that
permeation is limited by diffusion through a single membrane
barrier, the dynamic model breaks the permeation process
down into each step, with overall permeation being determined
by the kinetic rate constants linking each stage in the event.
Furthermore, the dynamic model allows incorporation of
concentration differences at each position and the surface area
to volume ratios.
In the dynamic mechanistic model of permeation, movement

between each position depends not only on the kinetic rate

Figure 7. Correlation between average number of hydrogen bonds
formed with lipid or water while membrane partitioned and
experimental permeation.
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constants linking compartments but also the concentration of
small molecule in each compartment. The compound first
partitions into the membrane with rate constant kin; the
concentration of small molecule partitioned in the membrane at
the lipid outer position depends on the membrane partitioning
Klip as controlled by kout. The next step, flip-flop across the
hydrophobic core, therefore depends both on the kflip rate
constant and also the concentration of drug at the lipid outer
position. Higher membrane partitioning may compensate for a
lower kflip rate constant. After flip-flop, the compound must exit
the membrane with rate constant kout; however, again this
depends on the concentration of drug able to reach the lipid
inner position. With higher kflip, there is greater concentration
at the lipid inner layer which may swamp the kout step; with
lower kflip, there is reduced concentration available to leave the
membrane. This is likely why, for this data set, overall
membrane permeation depends strongly on kflip rate constant:
compounds with higher kflip allow greater concentrations to
reach the lipid inner region and the kout may proceed quickly.
However, with lower kflip, reduced concentration is present to
desorb from the membrane, which limits overall membrane
translocation. Using the ISDM, permeation of a single molecule
depends on each free energy barrier and there is no
dependence on molecular concentration available at each
position; this may explain the poorer performance of the ISDM
for lipophilic drug-like compounds.
For this data set, the overall membrane permeation depends

strongly on the kflip rate constant, which dictates both the ability
of compound to flip-flop and also the concentration of drug
able to reach the lipid inner layer, influencing the desorption
into the liposome interior. The free energy barrier to flip-flop
therefore correlates extremely well with experimental perme-
ation, which may simply be estimated from the average number
of hydrogen bonds each molecule makes with lipid or water
while it is membrane partitioned. Furthermore, the atomistic
detail afforded by MD simulations allows us to probe the
structural features that minimize hydrogen bonds to water and
lipid while partitioned; we find that in addition to the number
of HBDs and HBAs, intramembrane orientation and intra-
molecular hydrogen bonding are important. The permeation
profiles obtained from the dynamic mechanistic model of
permeation qualitatively match those from experimental
liposomal permeation studies,22 as could be expected when
using a kinetic model of permeation which best represents the
in vitro process. Furthermore, the advantage of such a model is
that it may be extended to better represent either a more
complicated in vitro system or potentially in vivo permeation,
with the caveat that we require all rates and concentrations
involved for such an extension.
Permeation profiles and coefficients were determined for the

neutral form of seven basic small molecules; these values can
then be converted to those for the charged population of the
compound at pH 7.4 via the Henderson−Hasselbalch relation-
ship, which is the inverse of the procedure used by Eyer et al. to
determine the permeability of the neutral species. However, it
should be noted that even a small shift in the pKa value used for
this calculation can have substantial effects. Furthermore, all-
atom simulations used entirely the neutral form of the
compound given that permeation of the cationic form through
the membrane is expected to be minimal.23 It is possible that
the cationic form of the molecule first partitions into the
membrane, becoming neutral only prior to flip-flop, given the
known attraction between cationic drug molecules and lipid

membranes.89 Although this may speed kin values, these were
never rate-limiting in overall permeation.
The calculation of kinetic processes using MD simulation

with fixed charged force fields is a relatively new area;90,91

simulation and analysis protocols are therefore still being
established. To date, few studies have examined force field
dependence of kinetic processes.92 Furthermore, the underlying
free energy surface may not accurately represent the system,
which may also impact on kinetic calculations; in this work, we
find that for certain molecules the calculated membrane
partitioning does not match experiment. The effect of force
fields and inclusion of polarization on membrane partitioning
has received attention previously72,93 and would be an
interesting follow-up study for the current data set. Addition-
ally, the current work assumed only the small molecule
movement along the membrane normal to be the reaction
coordinate of significance; however, a number of studies have
investigated the effect of other orthogonal slowly relaxing
degrees of freedom, such as small molecule orientation and
lipid headgroup reorganization.94−98 This work could, in the
future, be extended beyond a 1D reaction coordinate with the
correct selection of collective variables. Regardless, the
combination of MD-derived kinetic rate constants into a
wider systems-level model is an exciting development of in
silico all-atom simulation and may, in the future, allow the
detailed investigation of drug permeation and protein binding
in the wider context of a cellular system.
In order to extend our study to capture passive permeation

through realistic cell membranes, we must account for the
variable lipid composition and, furthermore, the asymmetric
distribution of lipid species and ions between the extracellular
and intracellular membrane layers. In this work, we used POPC
given that the experimental values were obtained using
liposomes composed of this lipid species; however, the ability
to model membranes of mixed lipid composition using
molecular dynamics and associated force fields58,99−105 may
allow future work to expand the present model to include a
more comprehensive representation of the cell membrane,
particularly given that membrane lipid composition has been
found to alter liposomal permeation.77

■ CONCLUSIONS

Combining all-atom MD simulations and a dynamic mecha-
nistic model of membrane permeation allows a detailed
investigation of each step involved in the membrane trans-
location event and derivation of structure−kinetics relation-
ships of passive membrane permeation. We find that either kflip
or kout may be the slowest step in overall permeation; however,
for the data set under study, the kflip rate constants essentially
dictate permeation. In order to optimize this rate, we must
lower hydrogen bonding to water or lipid while partitioned in
the membrane; this depends on intramembrane orientation,
HBD and HBA count, and the ability to shield HBDs. Finally,
the number of hydrogen bonds while partitioned metric may
efficiently rank compounds by overall permeation rate and
could potentially serve as a valuable virtual screening descriptor.
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M. S. J. Phys. Chem. B 2014, 118, 3572.
(70) Grossfield, A. WHAM: the weighted histogram analysis method,
2.0.9 ed.; University of Rochester, 2013.
(71) Hummer, G. New J. Phys. 2005, 7, 34.
(72) Jambeck, J. P. M.; Lyubartsev, A. P. Phys. Chem. Chem. Phys.
2013, 15, 4677.
(73) Roe, D. R.; Cheatham, T. E. J. Chem. Theory Comput. 2013, 9,
3084.
(74) Scherer, M. K.; Trendelkamp-Schroer, B.; Paul, F.; Peŕez-
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